969 research outputs found

    Area, climate heterogeneity, and the response of climate niches to ecological opportunity in island radiations of Anolis lizards

    Get PDF
    Aim Rates of climate niche evolution underlie numerous fundamental ecological processes and patterns. However, while climate niche conservatism varies markedly among regions and clades, the source of this variation remains poorly understood. We tested whether ecological opportunity can stimulate radiation within climate niche space at biogeographic scales, predicting that rates of climate niche evolution will scale with geographic area and climate heterogeneity. Location Caribbean Methods We quantified two temperature axes (mean temperature and temperature seasonality of species' localities) of the climate niche for 130 Anolis species on Cuba, Hispaniola, Puerto Rico, Jamaica and the northern and southern Lesser Antilles. Using a species-level phylogeny, we fitted macroevolutionary models that either constrained rates of climate niche evolution or allowed them to vary among regions. Next, we regressed region-specific evolutionary rates against area, species richness and climate heterogeneity. We evaluated whether results were robust to uncertainty in phylogenetic and biogeographic reconstructions and the assumed mode of evolution. Results For both niche axes, an Ornstein-Uhlenbeck model that allowed the net rate of evolution (Ļƒ2) to vary among island groups fit the data considerably better than a single-rate Brownian motion model. Nagelkerke pseudo-R2 values of the fit of these OU models to mean temperature and seasonality axes were 0.43 and 0.66, respectively. Evolutionary rates for both axes were higher in larger areas, which also have more species. Only the rate of mean occupied temperature evolution was positively related to climate heterogeneity, and only after accounting for region size. Conclusions Rates of climate niche evolution scale consistently with the area available for radiation, but responses to climate heterogeneity vary among niche axes. For the mean temperature axis, climate heterogeneity generated additional opportunities for radiation, but for seasonality it did not. Overall, the physical setting in which a clade diversifies can influence where it falls on the evolutionary continuum, from climate niche conservatism to radiation

    Anolis Newsletter VII

    Get PDF
    Newsletter for the 7th Anolis Symposium, Fairchild Tropical Botanic Gardens, Miami, Florida, 17-18 March 2018. It had been nearly a decade since the previous Anolis symposium was held in Cambridge, MA, at the Museum for Comparative Zoology, Harvard. A reunion of anole biologists en masse was long past due and it was decided that this symposium would be slightly different ā€“ we were going to hold it somewhere with anoles! And so, on the weekend of 17-18th March, 2018, nearly 70 anole biologists traveled to sunny south Florida to attend the 7th Anolis Symposium held at the beautiful Fairchild Tropical Botanic Gardens in Miami. In the grounds of the botanical gardens, attendees were presented with a diverse community of six (!) species of anole, both native and non-native, representing four distinct ecomorphs

    The islandā€“mainland species turnover relationship

    Get PDF
    Many oceanic islands are notable for their high endemism, suggesting that islands may promote unique assembly processes. However, mainland assemblages sometimes harbour comparable levels of endemism, suggesting that island biotas may not be as unique as is often assumed. Here, we test the uniqueness of island biotic assembly by comparing the rate of species turnover among islands and the mainland, after accounting for distance decay and environmental gradients. We modelled species turnover as a function of geographical and environmental distance for mainland (Mā€“M) communities of Anolis lizards and Terrarana frogs, two clades that have diversified extensively on Caribbean islands and the mainland Neotropics. We compared mainlandā€“island (Mā€“I) and islandā€“island (Iā€“I) species turnover with predictions of the Mā€“M model. If island assembly is not unique, then the Mā€“M model should successfully predict Mā€“I and Iā€“I turnover, given geographical and environmental distance. We found that Mā€“I turnover and, to a lesser extent, Iā€“I turnover were significantly higher than predicted for both clades. Thus, in the first quantitative comparison of mainlandā€“island species turnover, we confirm the long-held but untested assumption that island assemblages accumulate biodiversity differently than their mainland counterparts

    Adaptation, Speciation, and Convergence: A Hierarchical Analysis of Adaptive Radiation in Caribbean Anolis Lizards

    Get PDF
    This is the publisher's version, also available electronically from http://www.bioone.org/doi/abs/10.3417/0026-6493%282006%2993%5B24%3AASACAH%5D2.0.CO%3B2.Caribbean Anolis lizards are a classic case of adaptive radiation, repeated four times across islands of the Greater Antilles. On each island, very similar patterns of evolutionary divergence have occurred, resulting in the evolution of the same set of ecological specialistsā€”termed ecomorphsā€”on each island. However, this is only part of the story of the Caribbean anole radiations. Indeed, much of the species diversity of Caribbean Anolis occurs within clades of ecomorphs, which contain as many as 14 ecologically-similar species on a single island. We ask to what extent the classic model of ecological interactions as the driving force in adaptive radiation can account for this aspect of anole evolutionary diversity. Our answer is that it can in part, but not entirely. More generally, the most complete understanding of evolutionary diversification and radiation is achieved by studying multiple hierarchical evolutionary levels from clades to populations

    Predator-driven natural selection on risk-taking behavior in anole lizards

    Get PDF
    Biologists have long debated the role of behavior in evolution, yet understanding of its role as a driver of adaptation is hampered by the scarcity of experimental studies of natural selection on behavior in nature. After showing that individual Anolis sagrei lizards vary consistently in risk-taking behaviors, we experimentally established populations on eight small islands either with or without Leiocephalus carinatus, a major ground predator. We found that selection predictably favors different risk-taking behaviors under different treatments: Exploratory behavior is favored in the absence of predators, whereas avoidance of the ground is favored in their presence. On predator islands, selection on behavior is stronger than selection on morphology, whereas the opposite holds on islands without predators. Our field experiment demonstrates that selection can shape behavioral traits, paving the way toward adaptation to varying environmental contexts

    Do the relationships between hindlimb anatomy and sprint speed variation differ between sexes in Anolis lizards?

    Get PDF
    The ability of an animal to run fast has important consequences on its survival capacity and overall fitness. Previous studies have documented how variation in the morphology of the limbs is related to variation in locomotor performance. Although these studies have suggested direct relations between sprint speed and hindlimb morphology, few quantitative data exist. Consequently, it remains unclear whether selection acts in limb segment lengths, overall muscle mass or muscle architecture (e.g. muscle fiber length and cross-sectional area). Here, we investigate whether muscle architecture (mass, fiber length and physiological cross-sectional area), hindlimb segment dimensions, or both, explain variation in sprint speed across 14 species of Anolis lizards. Moreover, we test whether similar relationships exist between morphology and performance for both sexes, which may not be the case given the known differences in locomotor behavior and habitat use. Our results show that the main driver of sprint speed is the variation in femur length for both males and females. Our results further show sexual dimorphism in the traits studied and, moreover, show differences in the traits that predict maximal sprint speed in males and females. For example, snout vent length and overall muscle mass are also good predictors of sprint speed in males, whereas no relationships between muscle mass and sprint speed was observed in females. Only a few significant relationships were found between muscle architecture (fiber length, cross-sectional area) and sprint speed in male anoles, suggesting that overall muscles size, rather than muscle architecture, appears to be under selection

    Hybridization and rapid differentiation after secondary contact between the native green anole (\u3cem\u3eAnolis carolinensis\u3c/em\u3e) and the introduced green anole (\u3cem\u3eAnolis porcatus\u3c/em\u3e)

    Get PDF
    In allopatric species, reproductive isolation evolves through the accumulation of genetic incompatibilities. The degree of divergence required for complete reproductive isolation is highly variable across taxa, which makes the outcome of secondary contact between allopatric species unpredictable. Since before the Pliocene, two species of Anolis lizards, Anolis carolinensis and Anolis porcatus, have been allopatric, yet this period of independent evolution has not led to substantial speciesā€specific morphological differentiation, and therefore, they might not be reproductively isolated. In this study, we determined the genetic consequences of localized, secondary contact between the native green anole, A. carolinensis, and the introduced Cuban green anole, A. porcatus, in South Miami. Using 18 microsatellite markers, we found that the South Miami population formed a genetic cluster distinct from both parental species. Mitochondrial DNA revealed maternal A. porcatus ancestry for 35% of the individuals sampled from this population, indicating a high degree of cytonuclear discordance. Thus, hybridization with A. porcatus, not just population structure within A. carolinensis, may be responsible for the genetic distinctiveness of this population. Using treeā€based maximumā€likelihood analysis, we found support for a more recent, secondary introduction of A. porcatus to Florida. Evidence that ~33% of the nuclear DNA resulted from a secondary introduction supports the hybrid origin of the green anole population in South Miami. We used multiple lines of evidence and multiple genetic markers to reconstruct otherwise cryptic patterns of species introduction and hybridization. Genetic evidence for a lack of reproductive isolation, as well as morphological similarities between the two species, supports revising the taxonomy of A. carolinensis to include A. porcatus from western Cuba. Future studies should target the current geographic extent of introgression originating from the past injection of genetic material from Cuban green anoles and determine the consequences for the evolutionary trajectory of green anole populations in southern Florida

    Head Size of Male and Female Lizards Increases with Population Density Across Island Populations in the Bahamas

    Get PDF
    In polygynous lizards, maleā€“male competition is an important driver of morphologic and behavioral traits associated with intraspecific dominance. The extent to which females engage in aggressive behavior and thus contribute to competition-driven morphologic variation is not well studied. We used injury frequencies of brown anoles (Anolis sagrei) in 16 island populations to test the hypothesis that injury-inducing aggressive encounters increase with population density in both male and female lizards. We further asked whether intraspecific competition is a potential driver of phenotypic traits related to dominance by using population density as proxy for intraspecific competition. We found that the proportion of individuals with injuries was greater in populations with higher densities, suggesting that agonistic competitive interactions increase with population density. Size-adjusted head length of male and female lizards increased with population density, suggesting that larger heads might be advantageous when intraspecific competition is strong. We detected differences in morphology and injury frequency among islands for both males and females, which suggests that agonistic competitive interactions among females may be stronger than previously appreciated. Further research is needed to determine whether aggressive encounters involving females are restricted to intrasexual competition or whether they also involve males, and how morphologic traits of females are related to competitive dominance and reproductive success
    • ā€¦
    corecore